Multi-material additive manufacturing is crucial for intricate component fabrication, yet challenges, such as interfacial cracks and weak bonding, persist. This work investigated the laser powder bed fusion (L-PBF) of bimetallic components (stainless steel 304L-nickel-based alloy Inconel718) crucial in aerospace and nuclear applications. It is found that the interfacial cracks predominantly occur within the compositional transition zone where the proportion of 304L is between 45wt.% and 75wt.%, characterized by brittle Laves phases along grain boundaries. Experimental and finite element simulations of melt pool reveal that a higher ratio of temperature gradient (G̅) to the grain growth rate (R̅) (G̅/R̅) results in straight grain boundaries with underdeveloped secondary dendrites. This leads to the formation of continuous liquid film and strip-like Laves phase at grain boundaries, causing interfacial cracks during L-PBF. To suppress these cracks, this work proposes manipulating grain boundaries into a tortuous morphology through promoting the growth of secondary dendrites. By controlling the G̅/R̅ ratios below the critical value (<147.9×106K∙s/m2) and combining with a high cooling rate (G̅×R̅) during L-PBF, a well-developed secondary dendritic structure and grain refinement are achieved, significantly enhancing grain boundary tortuosity and forming discretely distributed Laves phases. As a result, interfacial cracks are completely suppressed, enabling the successful manufacturing of crack-free 304L-Inconel718 bimetallic components. The approach of tailoring the distribution of brittle precipitates through manipulating grain boundary morphology proposed in this work provides a novel and practical pathway for inhibiting cracks in multi-material additive manufacturing.
Read full abstract