Urban policymakers have long searched for stormwater management plans that incentivize stakeholders to adopt Green Infrastructure (GI) while effectively reducing the vulnerability of drainage systems. In this regard, our research introduces a novel framework to develop GI strategies that provide both hydrological resiliency and social acceptance. To achieve this, first, using a coupled Stormwater Management Model (SWMM) and Non-dominated Sorting Genetic Algorithm-II (NSGA-II), optimal alternatives for GI planning were generated. In the optimization process, we used a novel Simple Urban Flood Resilience Index (SUFRI) to consider the internal performance of the system in identifying resilient plans. Derived management strategies warrant runoff volume reduction and resilience improvement up to 31.3% and 55.1%, respectively. In the next step, Utilitarian-based Social Welfare (USW) was employed to clarify the socio-economic behavior of management strategies. Results indicate that while financial incentives significantly motivate developers to implement GI, they cannot guarantee high social welfare, and achieving a sustainable solution requires evaluating both SUFRI and USW layers under different subsidy levels. Visualizing the SUFRI layer revealed a critical failure in the resiliency trend of solutions that cannot be detected by evaluating simpler metrics, such as runoff volume reduction. This highlights the importance of the SUFRI method in conducting deeper evaluations and preventing financial waste. Finally, we navigated the intersection of USW and SUFRI measures to reach an ideal management plan with optimal supporting level. Our findings showed that the selected solution with the highest social acceptability can improve the resiliency of the system by 29 %. This study is a novel combination of the hydrological and social aspects of stormwater management, enabling decision-makers to take significant steps towards sustainable urban development.