We investigate magnetization reversal of two-body uniaxial Stoner particles, by injecting spin-polarized current through a spin-valve structure. The two-body Stoner particles perform synchronized dynamics and can act as an information bit in computer technology. In the presence of magnetic dipole–dipole interaction (DDI) between the two particles, the critical switching current Ic for reversing the two dipoles is analytically obtained and numerically verified in two typical geometric configurations. The Ic bifurcates at a critical DDI strength, where Ic can decrease to about 70% of the usual value without DDI. Moreover, we also numerically investigate the magnetic hysteresis loop, magnetization self-precession, reversal time and synchronization stability phase diagram for the two-body system in the synchronized dynamics regime.
Read full abstract