Artificial intelligence (AI) and deep learning (DL) are advancing in stock market prediction, attracting the attention of researchers in computer science and finance. This bibliometric review analyzes 525 articles published from 1991 to 2024 in Scopus-indexed journals, utilizing VOSviewer software to identify key research trends, influential contributors, and burgeoning themes. The bibliometric analysis encompasses a performance analysis of the most prominent scientific contributors and a network analysis of scientific mapping, which includes co-authorship, co-occurrence, citation, bibliographical coupling, and co-citation analyses enabled by the VOSviewer software. Among the 693 countries, significant hubs of knowledge production include China, the US, India, and the UK, highlighting the global relevance of the field. Various AI and DL technologies are increasingly employed in stock price predictions, with artificial neural networks (ANN) and other methods such as long short-term memory (LSTM), Random Forest, Sentiment Analysis, Support Vector Machine/Regression (SVM/SVR), among the 1399 keyword counts in publications. Influential studies such as LeBaron (1999) and Moghaddam (2016) have shaped foundational research in 8159 citations. This review offers original insights into the bibliometric landscape of AI and DL applications in finance by mapping global knowledge production and identifying critical AI methods advancing stock market prediction. It enables finance professionals to learn about technological developments and trends to enhance decision-making and gain market advantage.
Read full abstract