Roads and rail-based mobility infrastructures are the basis for mobility services and underpin several Sustainable Development Goals, but also induce material use and greenhouse gas emissions. To date, no stock-flow consistent study has assessed globally accumulated stocks of mobility infrastructures, associated material flows and emissions, and their spatial patterns.We present global findings on material stocks for all roads, rail-based infrastructures, incl. tunnels and bridges, and model associated material flows and their embodied emissions for the year 2021. The stock-flow consistent model combines crowd-sourced Open Street Maps data with archetypical infrastructure designs, material compositions, assumptions on lifetimes and network growth rates, incl. uncertainty ranges. We derive spatially explicit, national-level stock estimates for 180 countries, map them at a resolution of 5 arcminutes, and derive material flows and their embodied emissions at the country-level.We find that 314 [218–403] Gt of materials (41 [28–53] tons/cap) have accumulated in global mobility infrastructure, the majority in roads as aggregates and asphalt. Stocks are unequally distributed between countries, from averages of 23 [16–30] tons/cap in low income countries, to 130 [89–164] tons/cap in high income countries. Spatial inequality of per capita stocks per area differs by orders of magnitude, from 101-104 between rural, suburban, and dense urban areas. We find that 8 [4–16] Gt/year of material flows are due to expansion and maintenance, amounting to 6 [3–10] % of global resource extraction. These translate into 0.36 [0.19–0.69] Gt CO2eq/year, or 1 [0.5–1.9] % of global GHG emissions in 2021.Approximately two-thirds of these flows result from maintenance and replacement of stocks, indicating an important lock-in of resource use due to already existing infrastructure stocks. These findings support the crucial role of improving spatial planning, limiting stock expansion and (sub-)urbanization, to achieve more sustainable resource use and mitigate climate change.
Read full abstract