The influence of uncertainty in the absorption and scattering coefficients on the solution and associated parameters of the radiative transfer equation is studied using polynomial chaos theory. The uncertainty is defined by means of uniform and log-uniform probability distributions. By expanding the radiation intensity in a series of polynomial chaos functions we may reduce the stochastic transfer equation to a set of coupled deterministic equations, analogous to those that arise in multigroup neutron transport theory, with the effective multigroup transfer scattering coefficients containing information about the uncertainty. This procedure enables existing transport theory computer codes to be used, with little modification, to solve the problem. Applications are made to a transmission problem and a constant source problem in a slab. In addition, we also study the rod model for which exact analytical solutions are readily available. In all cases, numerical results in the form of mean, variance and sensitivity are given that illustrate how absorption and scattering coefficient uncertainty influences the solution of the radiative transfer equation.
Read full abstract