We prove global in time well-posedness for perturbations of the 2D stochastic Navier–Stokes equations ∂tu+u·∇u=Δu-∇p+ζ+ξ,u(0,·)=u0,div(u)=0,\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned} \\partial _t u + u \\cdot \ abla u= & {} \\Delta u - \ abla p + \\zeta + \\xi \\;, \\qquad u (0, \\cdot ) = u_{0} \\;,\\\\ {\ ext {div}}(u)= & {} 0 \\;, \\end{aligned}$$\\end{document}driven by additive space-time white noise ξ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\xi $$\\end{document}, with perturbation ζ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\zeta $$\\end{document} in the Hölder–Besov space C-2+3κ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathcal {C}^{-2 + 3\\kappa } $$\\end{document}, periodic boundary conditions and initial condition u0∈C-1+κ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ u_{0} \\in \\mathcal {C}^{-1 + \\kappa } $$\\end{document} for any κ>0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\kappa >0 $$\\end{document}. The proof relies on an energy estimate which in turn builds on a dynamic high-low frequency decomposition and tools from paracontrolled calculus. Our argument uses that the solution to the linear equation is a log\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\log $$\\end{document}–correlated field, yielding a double exponential growth bound on the solution. Notably, our method does not rely on any explicit knowledge of the invariant measure to the SPDE, hence the perturbation ζ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\zeta $$\\end{document} is not restricted to the Cameron–Martin space of the noise, and the initial condition may be anticipative. Finally, we introduce a notion of weak solution that leads to well-posedness for all initial data u0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ u_{0}$$\\end{document} in L2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ L^{2} $$\\end{document}, the critical space of initial conditions.
Read full abstract