Understanding the conditions that promote the evolution of migration is important in ecology and evolution. When environments are fixed and there is one most favorable site, migration to other sites lowers overall growth rate and is not favored. Here we ask, can environmental variability favor migration when there is one best site on average? Previous work suggests that the answer is yes, but a general and precise answer remained elusive. Here we establish new, rigorous inequalities to show (and use simulations to illustrate) how stochastic growth rate can increase with migration when fitness (dis)advantages fluctuate over time across sites. The effect of migration between sites on the overall stochastic growth rate depends on the difference in expected growth rates and the variance of the fluctuating difference in growth rates. When fluctuations (variance) are large, a population can benefit from bursts of higher growth in sites that are worse on average. Such bursts become more probable as the between-site variance increases. Our results apply to many (≥ 2) sites, and reveal an interplay between the length of paths between sites, the average differences in site-specific growth rates, and the size of fluctuations. Our findings have implications for evolutionary biology as they provide conditions for departure from the reduction principle, and for ecological dynamics: even when there are superior sites in a sea of poor habitats, variability and habitat quality across space determine the importance of migration.