The cooling of a Bose gas in finite time results in the formation of a Bose-Einstein condensate that is spontaneously proliferated with vortices. We propose that the vortex spatial statistics is described by a homogeneous Poisson point process (PPP) with a density dictated by the Kibble-Zurek mechanism (KZM). We validate this model using numerical simulations of the two-dimensional stochastic Gross-Pitaevskii equation (SGPE) for both a homogeneous and a hard-wall trapped condensate. The KZM scaling of the average vortex number with the cooling rate is established along with the universal character of the vortex number distribution. The spatial statistics between vortices is characterized by analyzing the two-point defect-defect correlation function, the corresponding spacing distributions, and the random tessellation of the vortex pattern using the Voronoi cell area statistics. Combining the PPP description with the KZM, we derive universal theoretical predictions for each of these quantities and find them in agreement with the SGPE simulations. Our results establish the universal character of the spatial statistics of point-like topological defects generated during a continuous phase transition and the associated stochastic geometry. Published by the American Physical Society 2024
Read full abstract