An optimal bounded control strategy for smart structure systems as controlled Hamiltonian systems with random excitations and noised observations is proposed. The basic dynamic equations for a smart structure system with smart sensors and actuators are firstly given. The nonlinear stochastic control system with noised observations is then obtained from the simplified smart structure system, and the system is expressed by generalized Hamiltonian equations with control, random excitation and dissipative forces. The optimal control problem for nonlinear stochastic systems with noised observations includes two parts: optimal state estimation and optimal response control based on estimated states, which are coupled each other. The probability density of optimally estimated systems has generally infinite dimensions based on the separation theorem. The proposed optimal control strategy gives an approximate separate solution. First, the optimally estimated system state is determined by the observations based on the extended Kalman filter, and the estimated nonlinear system with controls and stochastic excitations is obtained which has finite-dimensional probability density. Second, the dynamical programming equation for the estimated system is determined based on the stochastic dynamical programming principle. The control boundedness due to actuator saturation is considered, and the optimal bounded control law is obtained by the programming equation with the bounded control constraint. The optimal control depends on the estimated system state which is determined by noised observations. The proposed optimal bounded control strategy is finally applied to a single-degree-of-freedom nonlinear stochastic system with control and noised observation. The remarkable vibration control effectiveness is illustrated with numerical results. Thus the proposed optimal bounded control strategy is promising for application to nonlinear stochastic smart structure systems with noised observations.
Read full abstract