Tyrosinase is a copper-containing enzyme involved in the biosynthesis of melanin pigment. While the excess production of melanin causes hyperpigmentation of human skin, hypopigmentation results in medical conditions like vitiligo. Tyrosinase inhibitors could be used as efficient skin whitening agents and tyrosinase agonists could be used for enhanced melanin synthesis and skin protection from UV exposure. Among a wide range of tyrosinase-regulating compounds, natural and synthetic derivatives of furochromenones, such as 8-methoxypsoralen (8-MOP), are known to both activate and inhibit tyrosinase. We recently reported a synthetic approach to generate a variety of dihydrofuro[3,2-c]chromenones and furo[3,2-c]chromenones in a metal-free condition. In the present study, we investigated these compounds for their potential as antagonists or agonists of tyrosinase. Using fungal tyrosinase-based invitro biochemical assay, we obtained one compound (3k) which could inhibit tyrosinase activity, and the other compound (4f) that stimulated tyrosinase activity. The kinetic studies revealed that compound 3k caused 'mixed' type tyrosinase inhibition and 4f stimulated the catalytic efficiency. Studying the mechanisms of these compounds may provide a basis for the development of new effective tyrosinase inhibitors or activators.
Read full abstract