Contextual information is essential for learning and memory processes and plays a crucial role during the recall of extinction memory, and in the renewal effect, which is the context-dependent recovery of an extinguished response. The dopaminergic system is known to be involved in regulating attentional processes by shifting attention to novel and salient contextual cues. Higher dopamine levels are associated with a better recall of previously learned stimulus-outcome associations and enhanced encoding, as well as retrieval of contextual information which promotes renewal. In this fMRI study, we aimed to investigate the impact of processing contextual information and the influence of dopaminergic D2-like receptor activation on attention to contextual information during a predictive learning task as well as upon extinction learning, memory performance, and activity of extinction-related brain areas. A single oral dose of 1.25 mg bromocriptine or an identical-looking placebo was administered to the participants. We modified a predictive learning task that in previous studies reliably evoked a renewal effect, by increasing the complexity of contextual information. We analysed fixations and dwell on contextual cues by use of eye-tracking and correlated these with behavioural performance and BOLD activation of extinction-related brain areas. Our results indicate that the group with dopaminergic D2-like receptor stimulation had higher attention to task-relevant contextual information and greater/lower BOLD activation of brain regions associated with cognitive control during extinction learning and recall. Moreover, renewal responses were almost completely absent. Since this behavioural effect was observed for both treatment groups, we assume that this was due to the complexity of the altered task design.
Read full abstract