5-hydroxymethylfurfural (HMF), produced by the Maillard reaction, can indicate thermal processes in food. Previous research has examined the cytotoxic, genotoxic, mutagenic, and carcinogenic characteristics of HMF and its derivatives in different organs. Nevertheless, there is currently no available evidence about the impact of HMF on male reproductive toxicity. In this study, the effects of HMF on testosterone biosynthesis in both mouse testis and TM3 Leydig cells were investigated. HMF was administered to mice at doses of 30 and 300 mg/kg/day for 21 days and to Leydig cells at concentrations of 0.1, 1, and 10 mM for 24 h. The mechanism of action of HMF on testosterone biosynthesis in both mouse testis and Leydig cells was revealed by measuring the amount of testosterone, 3′,5′-cyclic adenosine monophosphate (cAMP) levels, and the expression level of some important genes in the steroidogenic pathway. In addition, its effects on general testis were examined through histopathological evaluations. Upon examination of the results, it was observed that HMF had a significant impact on reducing testosterone and cAMP levels. Furthermore, HMF inhibited the expression of steroidogenic genes, including steroidogenic acute regulatory protein, cholesterol side-chain cleavage enzyme, 3β-hydroxy dehydrogenase, and 17β-hydroxy dehydrogenase, as well as transcription factors, such as steroidogenic factor-1, GATA binding protein-4, and nerve growth factor IB. HMF-administrated groups had germinal epithelium degradation, vacuolization, and disorders in the interstitial area. Consequently, it has been proven for the first time that HMF can damage the male reproductive system by detrimentally impacting the production of testosterone.
Read full abstract