BackgroundTransmitters used in telemetry studies are typically surgically implanted into the coelom of fish. When large numbers of fish are implanted consecutively, as in large telemetry studies, it is common for surgical tools (such as scalpels, forceps, needle holders and sutures) to be sterilized or, at minimum, disinfected between each use to minimize the transfer of pathogens. Chemicals are commonly used for disinfection but they can potentially harm fish and surgeons. UV radiation could provide a safe and more effective means for disinfection. The efficacy of UV radiation was determined for disinfecting surgical tools exposed to one of four aquatic organisms that typically lead to negative health issues for salmonids. The organisms include Aeromonas salmonicida, Flavobacterium psychrophilum, Renibacterium salmoninarum, and Saprolegnia parasitica, the causative agents of ulcer disease, coldwater disease, bacterial kidney disease, and saprolegniasis (water mold), respectively.ResultsIn the first experiment, forceps were exposed to three species of bacteria at three varying concentrations. After exposure, tools were placed into a mobile Millipore UV sterilization apparatus. The tools were then radiated for three different time periods – 2, 5 or 15 minutes. UV radiation exposures at all durations were effective at killing all three species of bacteria on forceps at the highest bacteria concentrations. In the second experiment, stab scalpels, sutures and needle holders were exposed to A. salmonicida using the same methodology as used in Experiment 1. UV radiation exposure at 5 and 15 minutes was effective at killing A. salmonicida on stab scalpels and sutures but not needle holders. In the third experiment, S. parasitica, a water mold, was tested using an agar plate-method and forceps-pinch method. UV radiation was effective at killing the water mold at all three exposure durations.ConclusionsCollectively, this study shows that UV radiation appears to be an effective disinfection method for some surgical tools. However, we do not recommend using this method for tools that have overlapping parts, such as needle holders, or other structures that cannot be exposed directly to UV radiation.
Read full abstract