Targeting accuracy presents a key factor in achieving maximal safe ablation in laser interstitial thermal therapy (LITT). The VarioGuide system has proven precise for brain biopsies, but data showing its accuracy in combination with LITT are limited. The aim of this study was to determine the phantom and in vivo accuracy of LITT probe placement using the VarioGuide system and to evaluate the effect of targeting error on maximum possible ablation volume. Stereotactic LITT probe placement was performed using the VarioGuide system in 3 phantom skulls. The same system was used in 10 patients treated with LITT, for which data were retrospectively analyzed. Target point error (TPE), target depth deviation (TDD), target lateral deviation (TLD), and angular deviation (AD) were derived from intraprocedural MRI scans of both the phantom and in vivo trajectories. In vivo, the effect of targeting error on the maximum reachable ablation was calculated as the difference between the planned maximal achievable tumor ablation (PTA) and the actual maximal achievable tumor ablation (ATA). In total, 24 phantom and 16 in vivo trajectories were analyzed. In the phantom setting, the median TPE was 3.3 mm and median AD was 1.9°. Targeting accuracy significantly decreased for longer trajectories and those less perpendicular to the skull. In patients, the authors observed a comparable median TPE of 4.0 mm but significantly higher AD of 3.2°. In vivo, targeting inaccuracy resulted in a median decrease in maximum achievable ablation volume of 6% as compared to the planned trajectory. The authors' study indicates that utilizing the VarioGuide system in combination with LITT yields an average targeting error as large as 4 mm, which was smaller for shorter and straighter trajectories. In patients, targeting inaccuracy resulted in a median 6% decrease of the planned tumor ablation volume. These are important factors that should be considered in optimal case planning and patient selection in LITT.
Read full abstract