Tefluthrin is one of widely used chiral pyrethroid pesticides. The potential enantioselective risk posed by tefluthrin to the aquatic ecosystem is still unclear. In this study, the toxicity differences and corresponding mechanism of tefluthrin on zebrafish were investigated at the enantiomeric level. The results indicated that two tefluthrin enantiomers showed different acute toxicity, developmental toxicity and oxidative stress to zebrafish. The acute toxicity of (1R,3R)-tefluthrin was 130–176 fold as that of (1S,3S)-tefluthrin on zebrafish embryos, larvae and adults. (1R,3R)-Tefluthrin presented approximately 10, 3 and 2 times inhibition effect on the deformity rate, hatching rate and spontaneous movements on embryos as that of (1S,3S)-tefluthrin. Meanwhile, (1R,3R)-tefluthrin caused stronger oxidative stress on zebrafish embryo than (1S,3S)-tefluthrin. The molecular docking results revealed that there were stereospecific binding affinities between tefluthrin enantimers and sodium channel protein (Nav1.6), which may lead to acute toxicity differences. Transcriptome analysis showed that the two tefluthrin enantiomers markedly disturbed differential embryonic genes expression, thereby potentially causing the chronic enantioselective toxicity. The findings of the study reveal the toxicity differences and potential mechanism of tefluthrin enantiomers on zebrafish. These results also provides a foundation for a systematic evaluation of tefluthrin at enantiomer level.
Read full abstract