Modern warfare relies heavily on electronic equipment, necessitating reliable energy sources like thermal batteries. Assessing their impact resilience, a study employed honeycomb-structured Al plates as buffering devices in a large-scale gas gun simulating artillery fire. Comparison between peak curves from gas-gun tests and simulations with varying honeycomb wall thicknesses revealed unique patterns, attributed to the buffering device's deformation-restoration process. Different honeycomb wall thicknesses led to varying deformation behavior and impact deceleration, complicating effective energy absorption assessment. Stepped honeycomb wall designs aimed to balance compression, extending energy absorption and reducing deceleration peaks. Prototype honeycomb buffering devices showed improved energy absorption and reduced deceleration during gas-gun tests. Gas-gun tests highlighted complexities in energy absorption assessment, with designs proposing improved energy absorption and reduced deceleration. The actual gas-gun test launched a projectile equipped with a thermal battery and buffering device, resulting in slight casing deformation, while battery cells remained intact, exceeding the standard discharge time (1 h).
Read full abstract