Fatigue crack growth (FCG) tests were conducted on compact tension specimens made of a Ni-based superalloy to investigate the near-threshold FCG behaviors using both the stepped load reduction method (LRM) and the constant-amplitude loading method (CALM) at three stress ratios (R = 0.05, 0.5 and 0.7) under ambient condition. It is found that after the FCG threshold being approached by the LRM, a remarkable hysteresis plateau occurs on the subsequent FCG curve generated by the CALM for R ≤ 0.5, resulting a hysteresis loop on the near-threshold region, but the situation becomes complicated at R = 0.7. In the appearance of hysteresis plateau, the FCG life to fracture can be over 107 cycles longer than that without hysteresis plateau. For FCG rate faster than 10−8 m/cycle, the fractography is dominated by transgranular feature which is insensitive to the microstructure of the alloy. In the hysteresis plateau region where FCG rate is lower than 10−9 m/cycle, fractography shows a wide optical dark zone where microstructure-sensitive crystallographic facet feature dominates, while when no hysteresis at R = 0.7, the optical dark zone is too narrow for the fracture feature transition so that crystallographic facet, transgranular as well as mosaic features can be observed simultaneously. As FCG in the hysteresis plateau under the CALM can be significantly slower than that under the stepped LRM, it is recommend that the stepped LRM should be used to generate the material basic FCG curves for fatigue life prediction of high durability structures.
Read full abstract