Cell disintegration and protein extraction are crucial steps in downstream process development for biopharmaceuticals produced in E. coli. In this study, we explored the extraction mechanism of polyethyleneimine (PEI) at the cellular level and characterized the floc network that is formed upon PEI addition by Focused Beam Reflectance Measurement and Dispersion Analyzer. PEI disintegrates the cells by detachment of the outer membrane allowing protein to diffuse into the interspace of the flocs. Protein release into the supernatant occurs by diffusion out of the floc network. We could show that the type and concentrations of PEIs with varying molecular weight determines the floc properties and thus the extraction efficiency. We could demonstrate why optimal conditions, using 70 kDa PEI at 0.25 g/g cell dry mass, lead to efficient extraction while at suboptimal conditions extraction is almost negligible. Our findings provide valuable insights into the relationship between floc properties and PEI-driven protein extraction, with potential applications in bioprocessing and biotechnology.
Read full abstract