Liver cancer stem cells (CSCs) contribute to tumor initiation, progression, and recurrence in hepatocellular carcinoma (HCC). The Wnt/β-catenin pathway plays a crucial role in liver cancer stemness, progression, metastasis, and drug resistance, but no clinically approved drugs have targeted this pathway efficiently so far. We aimed to elucidate the role of COLEC10 in HCC stemness. The Cancer Genome Atlas (TCGA) and the Clinical Proteomic Tumor Analysis Consortium (CPTAC) databases were employed to search for the association between COLEC10 expression and HCC stemness. Colony formation, sphere formation, side population, and limiting dilution tumor initiation assays were used to identify the regulatory role of COLEC10 overexpression in the stemness of HCC cell lines. Wnt/β-catenin reporter assay and immunoprecipitation were performed to explore the underlying mechanism. COLEC10 level was negatively correlated with HCC stemness. Elevated COLEC10 led to decreased expressions of EpCAM and AFP (alpha-fetoprotein), two common markers of liver CSCs. Overexpression of COLEC10 inhibited HCC cells from forming colonies and spheres, and reduced the side population numbers in vitro, as well as the tumorigenic capacity in vivo. Mechanically, we demonstrated that overexpression of COLEC10 suppressed the activity of Wnt/β-catenin signaling by upregulating Wnt inhibitory factor WIF1 and reducing the level of cytoplasmic β-catenin. COLEC10 overexpression promoted the interaction of β-catenin with the component of destruction complex CK1α. In addition, KLHL22 (Kelch Like Family Member 22), a reported E3 ligase adaptor predicted to interact with CK1α, could facilitate COLEC10 monoubiquitination and degradation. COLEC10 inhibits HCC stemness by downregulating the Wnt/β-catenin pathway, which is a promising target for liver CSC therapy.