Modern robust steganography-based cyber attacks often bypass intrinsic cloud security measures, and contemporary steganalysis methods struggle to address these covert threats due to recent advancements in deep learning (DL)-based steganography techniques. Existing steganography removal methods are constrained by trade-offs involving high processing times, poor quality of sanitized images, and insufficient removal of steganographic content. This paper introduces SteriCNN, a lightweight deep residual neural network model designed for steganography removal. SteriCNN effectively eliminates embedded steganographic information while preserving the visual integrity of the sanitized images. We employ a series of convolutional blocks with three residual connections for feature extraction, feature learning, feature attention, and image reconstruction from the residue. The proposed model utilizes the correlation of channel features to achieve a faster learning rate, and by varying the dilation rate in convolutional blocks, the model achieves wider receptive fields, enabling it to cover larger areas of the input image at each layer. SteriCNN is targeted for blind image sterilization for real-time use cases due to its low training and prediction time costs. Our study shows impressive results for both traditional and deep learning-based stego vulnerabilities, with approximately 90% of steganograms eliminated while maintaining an average PSNR value of 46 dB and an SSIM of 0.99 when tested with popular steganography methods.
Read full abstract