Studies on the pathway to multi-response characterization of the improved elliptical vessel solar receiver for environmental sustainability has been studied. The materials were sourced based on categories of components element: support mechanisms made of mild steel plates, bolts, nuts, clamps, and water as heat transfer fluid. The reflector was made of aluminum foil tape while the vessel has a glass cover fitted with bolts and nuts, the receiver is made of copper pipe, aluminum pipe, galvanized iron pipes, and stainless steel pipes. They are fitted into the vessel with chlorinated polyvinyl chloride 3⁄4 pipes, and journal-bearing mechanisms. Furthermore, glass cover attachment reduces radiative heat loss coefficient by eliminating wind influence and increases heat flux inside the vessel thereby improving heat transfer, hence improving the overall system's efficiency. The pathway to multi-response characterization showed that the average experimental thermal efficiency rose from 9.83% to 12.55% and from 4.42% to 7.03% for Polyurethane coated Copper and Aluminum respectively. It reduced from 9.83% to 8.53% and from 8.10% to 6.50% respectively for Polyurethane coated Galvanized Iron and Aluminum. This depicts the gleam appearance of Polyurethane coating on Galvanized Iron and stainless steel thus reducing their heat absorption coefficient and in turn reducing their efficiency.