Traditionally, fresh S. japonicum flowers (SJF) and S. japonicum flowers buds (SJFB) are dried prior to further processing and use. Here, we investigated the ways in which drying techniques, including sun drying (SD), steam drying (STD), microwave drying (MD), hot air drying (HAD, 40 °C, 60 °C, 80 °C, 100 °C), and freeze drying (FD), alter the flavonoid composition of freshly-harvested SJF and SJFB. The flavonoid content of dried samples was determined by Ultra High Performance Liquid Chromatography-Diode Array Detector (UPLC-DAD). Overall, different drying techniques had significantly different effects on the RU content, ranging from 10.63 % (HAD-80 °C) to 34.13 % (HAD-100 °C) in SJF and from 18.91 % (HAD-100 °C) to 29.16 % (HAD-40 °C) and 30.53 % (SD) in SJFB. To clarify the mechanism by which drying affects the RU content of S. japonicum flowers, we studied the activity of a rutin-hydrolyzing enzyme (RHE) isolated from SJF and SJFB using multiple separation and assay methods. According to the Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) results, the apparent molecular weight of the purified RHE was approximately 38 kDa. According to UPLC-DAD, RHE catalyzes the production of quercetin (QU) from rutin (RU), but not from other flavonoid glycosides. Drying fresh SJF and SJFB at low and high temperatures can inhibit RHE activity and prevent RU hydrolysis. Therefore, subjecting freshly-harvest SJF to HAD-100 °C, and freshly-harvest SJFB to SD or HAD-40 °C, can greatly increase the RU content. In particular, HAD is viable for large-scale application due to its simplicity and industrial feasibility.
Read full abstract