Microbes transform their environments using diverse enzymatic reactions. However, it remains challenging to measure microbial reaction rates in natural environments. Despite advances in global quantification of enzyme abundances, the individual relationships between enzyme abundances and their reaction rates have not been systematically examined. Using matched proteomic and reaction rate data from microbial cultures, we show that enzyme abundance is often insufficient to predict its corresponding reaction rate. However, we discovered that global proteomic measurements can be used to make accurate rate predictions of individual reaction rates (median R 2 = 0.78). Accurate rate predictions required only a small number of proteins and they did not need explicit prior mechanistic knowledge or environmental context. These results indicate that proteomes are encoders of cellular reaction rates, potentially enabling proteomic measurements in situ to estimate the rates of microbially mediated reactions in natural systems.
Read full abstract