ObjectiveOrganizational hormone effects on the human brain and behavior are often retrospectively assessed via morphological markers of prenatal (e.g., 2D:4D digit ratio) or pubertal (e.g., facial width-to-height ratio, fWHR) hormone exposure. It has been argued that markers should relate to circulating hormones particularly in challenging, dominance/status-relevant situations. However, meta-analytic research indicates that fWHR, a frequently used pubertal marker, is neither reliably sex-dimorphic nor related to steroid hormones. This casts doubt on fWHR’s validity for reflecting hormone levels. Ulna-to-fibula ratio (UFR), an alternative, long-bone-length-based pubertal marker, is sex-dimorphic and associated with dominance motivation. However, its hormonal associations were never tested before. We therefore explored UFR’s relationships to baseline and reactive hormone levels.MethodsWe measured ulna and fibula length as well as shoulder/waist/hip circumference of 81 participants (49 women; after exclusions) via anthropometry. Salivary hormone levels (estradiol, testosterone) at baseline and after a gross-motor one-on-one balancing contest were measured via radioimmunoassay.ResultsWe replicated UFR’s dimorphism, unrelatedness to height, and correlations to other putative markers of organizational hormone effects. On an exploratory basis, we found UFR to be related to overall baseline testosterone and to competition-induced reactive surges in steroid hormones (estradiol, testosterone) overall and in women.ConclusionsOur results hint at UFR’s relationship to baseline testosterone and may indicate functional connections between outcomes of pubertal organizational hormone effects and contest-induced steroid reactivity. Pubertal organizational hormone effects may prepare the endocrine system for dominance and status contests. However, the small sample and the exploratory nature of our research demands replication.