We report an investigation and a theoretical assessment of energy loss prediction in crystalline and amorphous soft magnetic materials. There were tested a sample made from non-oriented silicon iron (NO FeSi) M800-65A, industrial type alloy, cut longitudinally to the rolling direction and a toroidal sample of Co67Fe4B14.5Si14.5 amorphous ribbon. The losses behaviour of the crystalline NO FeSi strip was studied as function of frequency in the range of 5 Hz to 200 Hz at a given magnetic polarization (Jp) of 0.5 T and 1 T. In the case of the amorphous Co-based ribbon the losses variation was studied as function of frequency in the range of 5 Hz to 10 kHz at a given magnetic polarization of 20 mT. Using the concept of loss separation for the data analysis, in the approximation of linear magnetization law and low frequency limit, it can be considered in both cases, that the excess losses can be quantitatively assessed within the theoretical framework of the statistical loss model based on magnetic object theory.
Read full abstract