In this study, we analyze magnetoencephalographic (MEG) recordings from 48 clinically healthy subjects obtained from the Human Connectome Project (HCP) while they performed a working memory task and a motor task. Our results reveal a well-developed, stable interrelation pattern that spans the entire scalp and is nearly universal, being almost task- and subject-independent. Additionally, we demonstrate that this pattern closely resembles a stationary correlation pattern (SCP) observed in EEG signals under various physiological and pathological conditions (the distribution of Pearson correlations are centered at about 0.75). Furthermore, we identify the most effective EEG reference for studying the brain's functional network derived from lag-zero cross-correlations. We contextualize these findings within the theory of complex dynamical systems operating near a critical point of a phase transition.