We will discuss our recent work to better understand the role of charge transfer (CT) states in organic solar cell function. For one, we have been exploring organic semiconductor-based thin films that feature crystalline grains of up to 1 mm in extent, termed microcrystalline films. We have found that CT states incorporating these long-range-ordered films can be highly delocalized, contributing to noticeably lower energy losses. In another system, we are studying donor-acceptor pairs that feature very high optical gaps (>3 eV) but relatively small frontier orbital energy offset (<1 eV). Such interfaces present multiple CT states that reveal new insight about photocurrent generation and nonradiative recombination at donor-acceptor interfaces. Finally, we have developed a framework to discriminate between dynamic and static disorder contributions. Both are shown to contribute, and the relative contribution depends on materials choice and temperature.