We present experimental results for patterns of Rayleigh-Bénard convection in a cylindrical container with static sidewall forcing. The fluid used was methanol, with a Prandlt number sigma=7.17 , and the aspect ratio was Gamma identical withR/d approximately 19 ( R is the radius and d the thickness of the fluid layer). In the presence of a small heat input along the sidewall, a sudden jump of the temperature difference DeltaT from below to slightly above a critical value Delta T(c) produced a stable pattern of concentric rolls (a target pattern) with the central roll (the umbilicus) at the center of the cell. A quasistatic increase of epsilon identical withDeltaT/Delta T(c) -1 beyond epsilon(1,c) approximately 0.8 caused the umbilicus of the pattern to move off center. As observed by others, a further quasistatic increase of epsilon up to epsilon=15.6 caused a sequence of transitions at epsilon(i,b) ,i=1,...,8 , each associated with the loss of one convection roll at the umbilicus. Each loss of a roll was preceded by the displacement of the umbilicus away from the center of the cell. After each transition the umbilicus moved back toward but never quite reached the center. With decreasing epsilon new rolls formed at the umbilicus when epsilon was reduced below epsilon(i,a) < epsilon(i,b) . When decreasing epsilon , large umbilicus displacements did not occur. In addition to quantitative measurements of the umbilicus displacement, we determined and analyzed the entire wave-director field of each image. The wave numbers varied in the axial direction, with minima at the umbilicus and at the cell wall and a maximum at a radial position close to 2Gamma/3 . The wave numbers at the maximum showed hysteretic jumps at epsilon(i,b) and epsilon(i,a) , but on average agreed well with the theoretical predictions for the wave numbers selected in the far field of an infinitely extended target pattern. To our knowledge there is as yet no prediction for the wave number selected by the umbilicus itself, or by the cell wall of the finite experimental system.
Read full abstract