ABSTRACTThis study computes the potential energy curves of the X1Σ+, A1Π, B1Δ, C1Σ+, and D1Π states of AlO+ cation and the transition dipole moments between them. The orders of the rotationless radiative lifetimes are 10–100 μs for the A1Π state, 1–1000 ms for the B1Δ state, 10 ns for the first well and 100 ns for the second well of the C1Σ+ state, and 1 μs for the D1Π state. Emissions of the B1Δ–A1Π and D1Π–C1Σ+ systems are so weak that they are hardly measured via spectroscopy, the emissions of the C1Σ+–X1Σ+, C1Σ+–A1Π, and D1Π–X1Σ+ systems are so strong that they can be detected readily, and emissions of the A1Π–X1Σ+ and D1Π–A1Π systems can be observed through spectroscopy only by a significant effort. There is a strong great similarity between spontaneous emissions of the A1Π–X1Σ+ system of the AlO+ cation and the A2Π–X2Σ+ system of the AlO radical. The emissions of the A2Π–X2Σ+ system of the AlO radical have been measured in outer space Therefore, it is highly possible that the emissions of the A1Π–X1Σ+ system of the AlO+ cation can be detected in the astrophysical media.
Read full abstract