The dual Dyson series [M.Frasca, Phys. Rev. A {\bf 58}, 3439 (1998)], is used to develop a general perturbative method for the study of atom-field interaction in quantum optics. In fact, both Dyson series and its dual, through renormalization group methods to remove secular terms from the perturbation series, give the opportunity of a full study of the solution of the Schr\"{o}dinger equation in different ranges of the parameters of the given hamiltonian. In view of recent experiments with strong laser fields, this approach seems well-suited to give a clarification and an improvement of the applications of the dressed states as currently done through the eigenstates of the atom-field interaction, showing that these are just the leading order of the dual Dyson series when the Hamiltonian is expressed in the interaction picture. In order to exploit the method at the best, a study is accomplished of the well-known Jaynes-Cummings model in the rotating wave approximation, whose exact solution is known, comparing the perturbative solutions obtained by the Dyson series and its dual with the same approximations obtained by Taylor expanding the exact solution. Finally, a full perturbative study of high-order harmonic generation is given obtaining, through analytical expressions, a clear account of the power spectrum using a two-level model, even if the method can be successfully applied to a more general model that can account for ionization too. The analysis shows that to account for the power spectrum it is needed to go to first order in the perturbative analysis. The spectrum obtained gives a way to measure experimentally the shift of the energy levels of the atom interacting with the laser field by looking at the shifting of hyper-Raman lines.