Numerous reactions within metabolic pathways have been reported to occur nonenzymatically, supporting the hypothesis that life arose upon a primitive nonenzymatic precursor to metabolism. However, most of those studies reproduce individual transformations or segments of pathways without providing a common set of conditions for classes of reactions that span multiple pathways. In this study, we search across pathways for common nonenzymatic conditions for a recurring chemical transformation in metabolism: alkene hydration. The mild conditions that we identify (Fe oxides such as green rust) apply to all hydration reactions of the rTCA cycle and gluconeogenesis, including the hydration of phosphoenolpyruvate (PEP) to 2-phosphoglycerate (2PGA), which had not previously been reported under nonenzymatic conditions. Mechanistic insights were obtained bystudying analogous substrates and through anoxic and radical trapping experiments. Searching for nonenzymatic conditions across pathways provides a complementary strategy to triangulate conditions conducive to the nonenzymatic emergence of a protometabolism.
Read full abstract