The accurate characterization of the plastic behavior of tubular materials is challenging due to the difficulties in acquiring proper specimens for mechanical testing. In this study, we propose a novel testing technique, namely the ring hoop plane strain Test (RHPST), as a supplementary test for characterizing materials experiencing distinct strain paths compared to standard uniaxial tensile tests. To design a suitable ring specimen’s geometry that satisfies the necessary plane strain conditions, we developed a meta-modelling approach merging response surface method (RSM) and the finite element method (FEM). Experimental tests are conducted on RHPST specimens, and 3D digital image correlation (DIC) technique is used to monitor the strain fields within the specimen's gauge section. However, observations indicate the presence of edge effects on the gauge specimen. These edge effects significantly influence and limit the homogeneity of the plane strain field. To tackle this limitation, a correction procedure is developed for separating the authentic plane strain area, constituting approximately 78% of the RHPST specimen's width. Furthermore, we successfully fabricated a novel grooved ring specimen (GRHPST), which exhibits a wider region of the plane strain state encompassing up to 90% of the gauge width, while minimizing the impact of edge effects. The true stress-true strain curve obtained from the GRHPST specimen exhibits exceptional agreement with the curve predicted using the Hill48 yield criterion. Notably, no additional corrections are required for the measured true stress-true strain curve, thereby affirming the efficacy of the GRHPST specimen as an adept test for characterizing the anisotropic plastic behavior of AA6063 tubes.