Biocompatibility evaluation of medical devices often relies on chemical testing according to ISO 10993–18 as a critical component for consideration. However, the precision associated with these non–targeted chemical characterization assessments has not been well established. Therefore, we have conducted a study to characterize intra–laboratory (repeatability) and inter–laboratory (reproducibility) variability associated with chemical testing of extractables from polymeric materials. To accomplish this, this study focused on two polymers, each with nine chemicals that were intentionally compounded into the materials. Eight different laboratories performed extraction testing in two solvents and subsequently characterized the extracts using gas chromatography and liquid chromatography methods. Analysis of the resulting data revealed the central 90 % range for the repeatability and reproducibility relative standard deviations are (0.09, 0.22) and (0.30, 0.85), respectively, for the participating laboratory methods. This finding implies that if the same sample was tested by two different laboratories using the same extraction conditions, there is 95 % confidence for 95 % of systems that the test results could exhibit differences up to 240 %. While the study was not designed to evaluate the relative impact of specific underlying factors that may contribute to variability in quantitation, the data obtained suggest the variability associated with analytical method alone is a substantial contribution to the overall variability. The relatively large reproducibility limits we observed may have significant implications where variability in extraction measurements can impact aspects of biocompatibility risk evaluation, such as exposure dose estimation and chemical equivalence assessments.