Fifth-generation (5G) wireless networks and beyond will be heterogeneous in nature, with a mixture of macro and micro radio cells. In this scenario where high power macro base stations (MBS) coexist with low power micro base stations (mBS), it is challenging to ensure optimal usage of radio resources to serve users with a multitude of quality of service (QoS) requirements. Typical signal to interference and noise ratio (SINR)-based user allocation protocols unfairly assign more users to the high power MBS, starving mBS. There have been many attempts in the literature to forcefully assign users to mBS with limited success. In this paper, we take a different approach using second order statistics of user data, which is a better indicator of traffic fluctuations. We propose a new algorithm for user association to the appropriate base station (BS) by utilizing the standard deviation of the overall network load. This is done through an exhaustive search of the best user equipment (UE)–BS combinations that provide a global minimum to the standard deviation. This would correspond to the optimum number of UEs assigned to every BS, either macro or micro. We have also derived new expressions for coverage probability and network energy efficiency for analytical performance evaluation. Simulation results prove the validity of our proposed methods to balance the network load, improve data rate, average energy efficiency, and coverage probability with superior performance compared with other algorithms.