Experiments on friction and wear are conducted on copper‐containing antimicrobial stainless steel specimens and ordinary 304 stainless steel under a range of normal loads (20, 40, 60, and 100 N) and temperatures (23, 0, −60, and −120 °C). Using a white light interference 3D surface profilometer and a scanning electron microscope, the friction coefficient curves, wear mark surfaces, and friction mechanisms under varying friction conditions are analyzed. The results show that coefficient of friction (COF) and wear decrease with the decline regarding temperature and load, and the lowest value occurs at −120 °C. The copper‐containing antimicrobial stainless steel shows excellent tribological properties, with the COF gradually reducing from 23 to −120 °C. By contrast, the COF increases with increasing load. Additionally, tests and comparisons of standard 304 stainless steel under the same conditions demonstrate that the copper‐containing antimicrobial stainless steel shows enhanced tribological performance than ordinary 304 stainless steel, with a 31.2% lower erosion rate than standard stainless steel at −120 °C. Moreover, simulations and contrasts show that the copper‐containing antimicrobial stainless steel shows superior toughness and strength than ordinary stainless steel at low temperatures due to the presence of copper elements.