Introduction Microorganisms play an important role in causing inflammation in the pulp and periapical regions. Even after undergoing chemo-mechanical procedures during root canal treatment, bacteria may persist within dentinal tubules, posing a risk of disease recurrence. Mineral trioxide aggregate (MTA), introduced as a dental material, has been investigated as a potential antibacterial agent since its early use. Calcium and phosphorus are the primary ions in MTA, and their antibacterial characteristics are attributed to the release of calcium hydroxide through surface hydrolysis of calcium silicate components. Previous studies have shown that MTA has limited antimicrobial properties. Several alterations have been made to enhance the biological properties of MTA, such as incorporating nanoparticles made from silver, zinc, gold, and titanium. Therefore, in this study, titanium tetrafluoride (TiF4) was added to MTA in an effort to enhance its antimicrobial properties. Aim To compare and evaluate the antibacterial efficacy of MTA after the incorporation of TiF4. Materials and methods A total of 56 samples were made by mixing MTA with different weight proportions of TiF4 (1 wt%, 2 wt%, and 3 wt%). Out of these, 28 samples were taken to test each of the following properties: antibacterial efficacy and pH. The specimens were prepared using stainless steel molds of recommended dimensions for testing the pH. The pH was evaluated using a pH meter, and the antibacterial efficacy was assessed using the direct contact test. Data regarding the antibacterial efficacy and pH of MTA with various proportions of TiF4 were investigated for normality using the Kolmogorov-Smirnov test and assessed for normal distribution. The antibacterial properties among the four groups were analyzed using one-way analysis of variance (ANOVA), followed by pairwise multiple comparisons using Tukey's Honest Significant Difference test. The level of statistical significance was determined at p ≤ 0.05. MTA, when incorporated with TiF4, showed enhanced antibacterial properties. Results On day 1, the group treated with MTA containing 3% TiF4 demonstrated the strongest antibacterial effectiveness, with a mean of 4.67 ± 0.04 colony-forming units (CFU)/mL × 10^8. However, the group treated with plain MTA had the lowest mean values, at 5.67 ± 0.25 CFU/mL × 10^8. On day 1, the MTA group with 3% TiF4 also had the highest mean pH values (11.90 ± 0.05), while the plain MTA group had the lowest mean pH values (11.64 ± 0.78). On day 7, the MTA group with 3% TiF4 had the highest pH value (12.85 ± 0.08), whereas the plain MTA group had the lowest pH value (11.92 ± 0.09). Conclusion The inclusion of TiF4 resulted in an augmentation of the antibacterial efficacy of MTA against Enterococcus faecalis (E. faecalis). Hence, the integration of TiF4 into MTA can be considered a promising development against E. faecalis during endodontic procedures.
Read full abstract