The axial compression behaviour of circular concrete-filled stainless-clad bimetallic steel tubular (CFSCBST) stub columns is addressed in this paper by experimental and numerical investigations. A total of five specimens were fabricated and subjected to axial compression loading. The varying parameters in the experimental study included the clad ratio of steel tube, the diameter-to-thickness ratio and the strength of the concrete. A three-dimensional finite element (FE) model was developed and validated against both dependent and independent test data to further study the axial compressive behaviour of circular CFSCBST stub columns in this paper. The parametric studies considering five major parameters, including the strength of the concrete, the substrate steel grade, the clad ratio, the diameter-to-thickness ratio and different bonding conditions of the stainless-clad (SC) bimetallic steel, were carried out by using the verified FE model. The applicability of existing design codes to the circular CFSCBST stub columns was further analysed through comparisons with the numerical results. New design methods based on unified and superposition theory have been proposed herein, which have improved accuracy for predicting the ultimate compression capacity of such circular CFSCBST stub columns.
Read full abstract