To understand the water pollution status and environmental risks of Changshou Lake, the concentrations of heavy metals (Cr, Cu, Zn, As, Cd, and Pb) in the water were collected and analyzed during different seasons. The study investigated temporal and spatial variations, distribution characteristics, pollution levels, and health risks associated with heavy metals in Changshou Lake. The results showed that all six heavy metals were below than the Class Ⅰ standard of the Surface Water Environmental Quality Standard (GB 3838-2002), but recent years have witnessed an increasing trend, with Cu, As, and Pb showing a significant increase (P<0.05). The temporal and spatial distributions of these heavy metals were different. Temporally, Cr and Cd concentrations in surface water were higher in summer, As and Zn were higher in spring, and Pb and Cu were higher in autumn and winter. Spatially, the concentrations of Cr, As, Cu, Zn, and Pb showed higher concentrations in the southern outlet of the reservoir, the northwestern Longxi River inlet, and the central part of the reservoir, whereas Cd was higher in the northern stagnant area. The overall levels of heavy metals in the water body of Changshou Lake were low, with Cr and Cu slightly polluted, while other heavy metals were identified as having an insignificant pollution level. Drinking water was the primary exposure pathway to carcinogenic and non-carcinogenic heavy metals in surface water bodies. The health risk values of Cr and As in water bodies were high, ranging from 6.2×10-10 to 3.0×10-4 and 5.1×10-8 to 3.9×10-5, respectively. The corresponding contribution rates for children and adults to the total health risk were high, with Cr accounting for 87.18% and 87.20%, respectively, while As accounted for 12.73% and 12.71%, respectively. Therefore, it is crucial to prioritize environmental risks associated with Cr and Cu, as well as the health risks associated with Cr and As in Changshou Lake These findings provide a scientific foundation for water pollution control and environmental quality improvement in Changshou Lake, and rational development and utilization of water resources.
Read full abstract