IntroductionIn Parkinson's Disease (PD), despite available treatments focusing on symptom alleviation, the effectiveness of conventional therapies decreases over time. This study aims to enhance the identification of candidates for device-aided therapies (DAT) using artificial intelligence (AI), addressing the need for improved treatment selection in advanced PD stages. MethodsThis national, multicenter, cross-sectional, observational study involved 1086 PD patients across Spain. Machine learning (ML) algorithms, including CatBoost, support vector machine (SVM), and logistic regression (LR), were evaluated for their ability to identify potential DAT candidates based on clinical and demographic data. ResultsThe CatBoost algorithm demonstrated superior performance in identifying DAT candidates, with an area under the curve (AUC) of 0.95, sensitivity of 0.91, and specificity of 0.88. It outperformed other ML models in balanced accuracy and negative predictive value. The model identified 23 key features as predictors for suitability for DAT, highlighting the importance of daily "off" time, doses of oral levodopa/day, and PD duration. Considering the 5-2-1 criteria, the algorithm identified a decision threshold for DAT candidates as > 4 times levodopa tablets taken daily and/or ≥1.8 h in daily “off” time. ConclusionThe study developed a highly discriminative CatBoost model for identifying PD patients candidates for DAT, potentially improving timely and accurate treatment selection. This AI approach offers a promising tool for neurologists, particularly those less experienced with DAT, to optimize referral to Movement Disorder Units.
Read full abstract