AbstractFollowing systemically administered adeno-associated virus gene therapy, vector particles are widely distributed, raising concerns about horizontal or germline vector transmission. Characterization of biodistribution and kinetics of vector DNA in body fluids can address these concerns and provide insights into vector behavior in accessible samples. We investigated biodistribution and vector shedding profile of valoctocogene roxaparvovec in men with severe hemophilia A enrolled in the phase 3 GENEr8-1 trial. Participants (n = 134) received a single 6 × 1013 vector genome (vg)/kg infusion and were assessed over 3 years. Vector DNA was measured using 4 different assays. Total vector DNA was evaluated in blood, saliva, stool, semen, and urine by quantitative polymerase chain reaction (qPCR). Encapsidated vector DNA was measured in plasma and semen with immunocapture-based qPCR. Contiguity of vgs and assembly of inverted terminal repeat fusions were measured in whole blood and peripheral blood mononuclear cells (PBMCs) using multicolor digital PCR. Median peak vector DNA levels observed 1 to 8 days after dosing were highest in blood, followed by saliva, semen, stool, and urine. Concentrations declined steadily. Encapsidated vector DNA cleared faster than total vector DNA, achieving clearance by ≤12 weeks in plasma and semen. Predominant vector genome forms transitioned from noncontiguous to full-length over time in whole blood and PBMCs, indicating formation of stable circularized episomes within nucleated cells. The replication-incompetent nature of valoctocogene roxaparvovec, coupled with steady clearance of total and encapsidated vector DNA from shedding matrices, indicates transmission risk is low. This trial was registered at www.ClinicalTrials.gov as #NCT03370913.