Aluminum is an energy-dense metal that reacts exothermically with a range of oxidizers, making it a potentially useful fuel for certain thermal energy and power applications (e.g., boilers, swirl-stabilized burners, rockets, etc.). In addition to its reactive properties, aluminum is naturally abundant and commercially available in fine powders that are relatively inexpensive and chemically stable. Fine aluminum dusts, with particle diameters on the order of micrometers, can be aerosolized and mixed with a gaseous oxidizer such as air to create stable dust flames and heat for a thermodynamic cycle. In order to realize the potential utility of aluminum-air dust flames, the fundamental combustion behavior, such as the burning velocity, must be understood. In this work, an experimental system was developed that allows metal dust flames to be observed within an optically-accessible pressurized chamber. Using a high-speed camera, fuel-rich premixed aluminum-air jet flames were imaged through narrowband interference filters, and the data were used to calculate burning velocity. A single polydisperse size distribution of particles was tested at pressures ranging from 1 to 7.2 bar. Burning velocity was found to decrease with increased pressure (P), with an approximate proportionality to P−0.6 over the range of pressures tested (∼P−0.3 for only the laminar flow conditions). This reduction in burning velocity with increased pressure is hypothesized to occur due to increased oxidizer density along with a decrease in interparticle spacing, which may result in asymmetric particle heating and increased competition for oxidizer.
Read full abstract