Recent research activities in forecasting suggest that artificial neural networks can be a promising alternative to the traditional linear models. However, no single model, either linear or nonlinear is capable of obtaining the forecasts accurately. In this paper, a hybrid methodology that combines symmetric α-stable autoregressive time series and artificial neural networks is proposed. The methodology is validated through Monte-Carlo simulations. Moreover, the new method is used to model real empirical data thus showing the usefulness of heavy-tailed models supported by artificial neural networks in statistical modeling.