This paper presents a modified finite element analysis (FEA) model for predicting the axial compression strength of large-diameter concrete-filled steel tubular (CFST) stub columns, addressing the gap in research that has often focused on smaller diameters. The size effect, which significantly impacts the structural performance of large-diameter CFST columns, is a key focus of this study. The goal is to validate the accuracy and reliability of the modified FEA model by comparing its predictions with experimental data from the literature, specifically examining ultimate axial load capacity, failure modes, and deformed shapes. In addition to validating the model, this study includes a comprehensive parametric analysis that explores how critical geometric parameters such as the diameter-to-thickness (D/t) ratio and length-to-diameter (L/D) ratio affect the axial compressive behavior of CFST stub columns. By systematically varying these parameters, the research provides valuable insights into the load-bearing capacity, deformation characteristics, and failure mechanisms of CFST columns. Furthermore, the material properties of the steel tube—particularly its yield strength—and the compressive strength of the concrete core are investigated to optimize the design and safety performance of these columns. The results indicate that the FEA model shows excellent agreement with experimental results, accurately predicting the axial load-strain response. It was observed that as the diameter of the steel tube increases, the peak stress, peak strain, strength index, and ductility index tend to decrease, underscoring the size effect. Conversely, an increase in the yield strength and thickness of the steel tube enhances the ultimate strength of the CFST columns. These findings demonstrate the reliability of the modified FEA model in predicting the behavior of large-diameter CFST columns, offering a useful tool for optimizing designs and improving safety margins in structural applications.
Read full abstract