This paper demonstrates synthesis of a self-assembled resin system containing p-acetylpyridine oxime, formaldehyde and p-methoxyacetophenone moieties in main chain and thermally cross-linkable periphery oxime groups, and application as antimicrobial coating in biomedical applications. The post-polymerization conversion from oxime into iminium groups was observed by heating scan, with exothermic peaks being at 194 to 247°C. Various degradation models including the Flynn-Wall-Ozawa (F-W-O), Kissinger-Akahira-Sunose (K-A-S), Tang (T) and Friedman (F) methods were employed to check the thermal stability of self-assembly by computing apparent activation energy. It has also exhibited strong biocidal properties against gram-positive and gram-negative bacteria, and fungi until the macrochain retains some positive charge. The obtained results prove that the structure of links, which combine the hydrophobic pyridine rings with the hydrophilic iminium groups, is responsible for the high biocidal activity of the resin system.