The purpose of this paper is to study the linear stability of “viscous” roll waves. These are periodic continuous traveling waves solutions of viscous perturbations of inhomogeneous hyperbolic systems. We first study the scalar case for the Burgers equation and for an inhomogeneous hyperbolic equation. Then we analyze the stability of roll waves, solutions of the shallow water equations with a real viscosity. In both cases, we first analyze the Evans function and compute an asymptotic expansion in the low frequency regime. Under a strong spectral stability condition, we prove the linear stability of viscous roll waves, solutions of the Saint Venant equations, with pointwise estimates on the Green functions.