We consider the linear stability of chiral matter-wave solitons described by a density-dependent gauge theory. By studying the associated Bogoliubov-de Gennes equations both numerically and analytically, we find that the stability problem effectively reduces to that of the standard Gross-Pitaevskii equation, proving that the solitons are stable to linear perturbations. In addition, we formulate the stability problem in the framework of the Vakhitov-Kolokolov criterion and provide supplementary numerical simulations which illustrate the absence of instabilities when the soliton is initially perturbed.
Read full abstract