The paper concerns the dynamics and stability of double-walled carbon nanotubes conveying fluid. The equations of motion adopted in the current study to describe the dynamics of such nano-pipes stem from the classical Bernoulli–Euler beam theory. Several additional terms are included in the basic equations in order to take into account the influence of the conveyed fluid, the impact of the surrounding medium and the effect of the van der Waals interaction between the inner and outer single-walled carbon nanotubes constituting a double-walled one. In the present work, the flow-induced vibrations of the considered nano-pipes are studied for different values of the length of the pipe, its inner radius, the characteristics of the ambient medium and the velocity of the fluid flow, which is assumed to be constant. The critical fluid flow velocities are obtained at which such a cantilevered double-walled carbon nanotube embedded in an elastic medium loses stability.