The stability of DNA molecules during viral or biotechnological encapsulation is a topic of active current research. We studied the thermal stability of double-stranded DNA molecules of different lengths in a confined space. Using a statistical model, we evaluate the melting profile of DNA molecules in two geometries: conical and cylindrical. Our results show that not only the confinement, but also the geometry of the confined space plays a prominent role in the stability and opening of the DNA duplex. We find that for more confined spaces, cylindrical confinement stabilizes the DNA, but for less confined spaces conical geometry stabilizes the DNA overall. We also analyse the interaction between DNA sequence and stability, and the evenness with which strand separation occurs. Cylindrical and conical geometries enable a better controlled tuning of the stability of DNA encapsulation and the efficiency of its eventual release, compared to spherical or quasi-spherical geometries.
Read full abstract