This study synthesized two azide-functionalized monomers through p-dichloro xylene and double-decker silsesquioxane (DDSQ) units with NaN3 to form DB-N3 and DDSQ-N3 monomers, respectively. In addition, five different propargyl-functionalized monomers were also prepared from hydroquinone, bisphenol A, bis(4-hydroxyphenyl)methanone, 2,4-dihydroxybenzaldehyde (then reacted with hydrazine hydrate solution) and 1,2-bis(4-hydroxyphenyl)-1,2-diphenylethene with propargyl bromide to form P-B, P-BPA, P-CO, P-NP, and P-TPE monomers, respectively. As a result, various DDSQ-based main chain copolymers could be synthesized using Cu(I)-catalyzed click polymerization through DDSQ-N3 with different propargyl-functionalized monomers, of which the chemical structure and molecular weight could be confirmed by using Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), and gel permeation chromatography (GPC) analyses. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscope (SEM), transmission electron microscopy (TEM), and photoluminescence (PL) spectroscopy analyses also could characterize the thermal stability, morphology, and optical behaviors of these DDSQ-based copolymers. All results indicate that the incorporation of an inorganic DDSQ cage could improve the thermal stability such as thermal decomposition temperature and char yield, because of the DDSQ dispersion homogeneously in the copolymer matrix, and this would then affect the optical properties of NP and TPE units in this work.